An expanded conformation of single-ring GroEL-GroES complex encapsulates an 86 kDa substrate.
نویسندگان
چکیده
Electron cryomicroscopy reveals an unprecedented conformation of the single-ring mutant of GroEL (SR398) bound to GroES in the presence of Mg-ATP. This conformation exhibits a considerable expansion of the folding cavity, with approximately 80% more volume than the X-ray structure of the equivalent cis cavity in the GroEL-GroES-(ADP)(7) complex. This expanded conformation can encapsulate an 86 kDa heterodimeric (alphabeta) assembly intermediate of mitochondrial branched-chain alpha-ketoacid dehydrogenase, the largest substrate ever observed to be cis encapsulated. The SR398-GroES-Mg-ATP complex is found to exist as a mixture of standard and expanded conformations, regardless of the absence or presence of the substrate. However, the presence of even a small substrate causes a pronounced bias toward the expanded conformation. Encapsulation of the large assembly intermediate is supported by a series of electron cryomicroscopy studies as well as the protection of both alpha and beta subunits of the substrate from tryptic digestion.
منابع مشابه
GroEL mediates protein folding with a two successive timer mechanism.
GroEL encapsulates nonnative substrate proteins in a central cavity capped by GroES, providing a safe folding cage. Conventional models assume that a single timer lasting approximately 8 s governs the ATP hydrolysis-driven GroEL chaperonin cycle. We examine single molecule imaging of GFP folding within the cavity, binding release dynamics of GroEL-GroES, ensemble measurements of GroEL/substrate...
متن کاملBeF(x) stops the chaperonin cycle of GroEL-GroES and generates a complex with double folding chambers.
Coupling with ATP hydrolysis and cooperating with GroES, the double ring chaperonin GroEL assists the folding of other proteins. Here we report novel GroEL-GroES complexes formed in fluoroberyllate (BeF(x)) that can mimic the phosphate part of the enzyme-bound nucleotides. In ATP, BeF(x) stops the functional turnover of GroEL by preventing GroES release and produces a symmetric 1:2 GroEL-GroES ...
متن کاملChaperonin GroEL meets the substrate protein as a "load" of the rings.
Chaperonin GroEL is an essential molecular chaperone that assists protein folding in the cell. With the aid of cochaperonin GroES and ATP, double ring-shaped GroEL encapsulates non-native substrate proteins inside the cavity of the GroEL-ES complex. Although extensive studies have revealed the outline of GroEL mechanism over the past decade, central questions remain: What are the in vivo substr...
متن کاملThe 69 kDa Escherichia coli maltodextrin glucosidase does not get encapsulated underneath GroES and folds through trans mechanism during GroEL/GroES-assisted folding.
Escherichia coli chaperonin GroEL and GroES assist in folding of a wide variety of substrate proteins in the molecular mass range of approximately 50 kDa, using cis mechanism, but limited information is available on how they assist in folding of larger proteins. Considering that the central cavity of GroEL can accommodate a non-native protein of approximately 60 kDa, it is important to study th...
متن کاملCrystal structure of the native chaperonin complex from Thermus thermophilus revealed unexpected asymmetry at the cis-cavity.
The chaperonins GroEL and GroES are essential mediators of protein folding. GroEL binds nonnative protein, ATP, and GroES, generating a ternary complex in which protein folding occurs within the cavity capped by GroES (cis-cavity). We determined the crystal structure of the native GroEL-GroES-ADP homolog from Thermus thermophilus, with substrate proteins in the cis-cavity, at 2.8 A resolution. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Structure
دوره 14 11 شماره
صفحات -
تاریخ انتشار 2006